If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-4v-4=0
a = 1; b = -4; c = -4;
Δ = b2-4ac
Δ = -42-4·1·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{2}}{2*1}=\frac{4-4\sqrt{2}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{2}}{2*1}=\frac{4+4\sqrt{2}}{2} $
| 189.5=50x | | r^2=-6+5r | | 3(x+4)=-2 | | 12^4x=20 | | (12n-40)-10n+30=n+10 | | 3-4x=-7+6x* | | 75+(x+52)+(67+x)=180 | | 14b-6=-2b14b-6=-2b+8+8 | | F(x)=x^4-12x-3 | | 6x-4=3x+ | | 5x+20=6x+54 | | 5n-2=-6 | | 6(u-4)=-4u-14 | | x*(x+12)=0 | | 3/4y-6=1/4y+16 | | 8p+16=12p | | -31s=-19.22 | | 8(z+3)=8(z+3) | | 3/4y=1/4y+16 | | 5x+6-(2(2x)=0 | | m3− 3=4 | | 2x+45=99-x | | 18-4a=4 | | -81+5x=-4x+63 | | z^2-4z+4=21+4 | | 4x^2+10x+13=0 | | 3k+24=9 | | 63-(5x+9)=5(x+2)+x | | -x-117=35-9x | | 20.5=4+9.5(c+7.5) | | 72=13y-5y | | y+2(36)+45=180 |